

Бифилярный подвес. Решение

Теоретическая модель

Для того, чтобы выявить степени α , β , γ и δ необходимо исследовать зависимость периода крутильных колебаний от каждого из параметров, которые мы в силах изменять. Зафиксируем все величины кроме параметра a. Тогда выражение

$$T = \eta T_0^{\alpha} L^{\beta} a^{\gamma} b^{\delta}$$

можно переписать в следующем виде:

$$T = C_1 \cdot a^{\gamma},$$

где C_1 — некая постоянная величина. Прологарифмируем данное выражение:

$$\ln T = \ln C_1 + \ln a^{\gamma}$$

или

$$\ln T = \ln C_1 + \gamma \cdot \ln a.$$

Перед нами линейная зависимость $\ln T (\ln a)$, где коэффициент наклона равен искомой степени γ . Аналогично поступим и с параметром b. Для него логарифмическое выражение будет выглядеть так:

$$\ln T = \ln C_2 + \delta \cdot \ln b.$$

Измерения

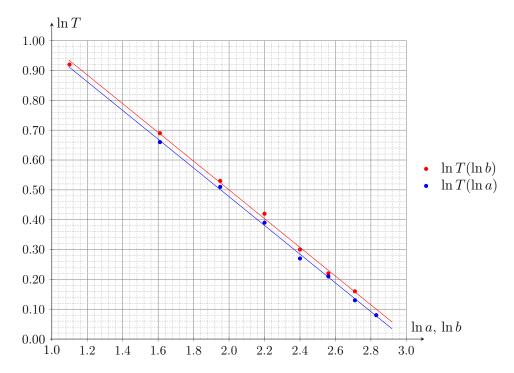
Зафиксируем значение параметра a=19,0 см. Изменяя значение параметра b, измерим время t для N=10 полных крутильных колебаний. Внесем измеренные значения и посчитаем искомые логарифмы.

b, cm	N	t, c	T, c	$\ln b$	$\ln T$
3,0	10	25,0	2,50	1,10	0,92
5,0	10	20,0	2,00	1,61	0,69
7,0	10	17,0	1,70	1,95	$0,\!53$
9,0	10	15,2	1,52	2,20	0,42
11,0	10	13,5	1,35	2,40	0,30
13,0	10	12,5	1,25	2,56	0,22
15,0	10	11,7	1,17	2,71	0,16

Повторим то же самое для фиксированного b = 20.0 см, изменяя значение a.

a, cm	N	t, c	<i>T</i> , c	$\ln b$	$\ln T$
17,0	10	10,8	1,08	2,83	0,08
15,0	10	11,4	1,14	2,71	0,13
13,0	10	12,3	1,23	2,56	0,21
11,0	10	13,1	1,31	2,40	0,27
9,0	10	14,7	1,47	2,20	0,39
7,0	10	16,6	1,66	1,95	0,51
5,0	10	19,4	1,94	1,61	0,66

Графики



Коэффициенты наклона получились следующие:

$$k_a = -0.477; \quad k_b = -0.483.$$

В условии задачи сказано, что искомые показатели степеней могуть быть полуцелыми, значит

$$\gamma = \delta = -\frac{1}{2}.$$

Рассчеты

Подставим полученные степени в основное уравнение:

$$T = \eta \, T_0^{\alpha} \frac{L^{\beta}}{\sqrt{ab}}.$$

По условию известно, что η — безразмерный коэффициент, а значит методом размерностей найдем

$$\alpha = 1$$

поскольку секунды можно получить только из секунд, ведь [L]= м. Дробь $\frac{L^{\beta}}{\sqrt{ab}}$ — безразмерна, а значит

$$\beta = 1.$$

Таким образом, исходное уравнение можно записать так:

$$T = \eta T_0 \frac{L}{\sqrt{ab}}.$$

Для нахождения η используем результаты одного из измерений и получим значение

$$\eta = 0.288.$$

Оценим погрешность данной величины.

$$\varepsilon \eta = \varepsilon_T + \varepsilon_L + 0.5(\varepsilon_a + \varepsilon_b).$$

Для использованной точки получим следующее округленное до целых значение:

$$\varepsilon_{\eta} = 3\%,$$

$$\Delta \eta = \eta \cdot \varepsilon_{\eta} = 0.00864.$$

В итоге в культурном виде будет записано так:

$$\eta = 0.29 \pm 0.01$$
.

Примечание. Если решить данную задачу теоретически, то получим следующее значение для этой безразмерной константы:

$$\eta = \frac{1}{\sqrt{12}} \approx 0.2887.$$