

Нить накаливания (псевдоэксперимент)

Теория

Закон Ньютона-Рихмана связывает мощность теплопотерь тела, его площадь остывающей поверхности и разность температур между ним и холодильником (окружающей средой):

$$P_{\rm out} = \alpha S(T - T_0),$$

где α — размерный коэффициент, который в рамках этого эксперимента можно считать постоянным. Кроме это можно пренебречь температурной зависимостью удельного сопротивления металла.

Часть 1

Цилидрический провод постоянного сечения, выполненный из некоторого металла, подключают контактами пренебрежимо малого сопротивления к идеальному источнику постоянного напряжения $U=(0.70\pm0.02)$ В. Исследуется зависимость установившейся за достаточное время температуры T проводника от его длины x (его каждый раз укорачивают). Результаты измерений приведены в таблице:

x, cm	T, °C
21	216
29	128
41	74
50	59
62	44
73	38
80	37
91	34
100	31

Задание

- 1. Постройте график зависимости T(x) (нанесите только точки).
- 2. Аналитически получите зависимость T(x).
- 3. Постройте график зависимости T от x в таких кооординатах, в которых эта зависимость будет линейной.
- 4. По графику определите температуру окружающей среды T_0 и оцените ее погрешность.
- 5. Найдите коэффициент k наклона графика и оцените его погрешность.

Часть 2

Дополнительно были проделаны следующие измерения:

- Используя метод прокатывания, было получено, что за N=10 оборотов проволока проезжает $l=(79,0\pm0,5)$ мм.
- Сопротивление L=10 м такой же проволоки оказалось равно $\Omega=(0.19\pm0.02)$ Ом.

Задание

- 6. Определите диаметр проволоки, оцените его погрешность.
- 7. Найдите удельное сопротивление металла, из которого изготовлена проволока, оцените его погрешность.
- 8. Используя результаты пунктов 5-7 определите коэффициент α в законе Ньютона-Рихмана в рамках данного эксперимента.