

Нить накаливания

A1. График T(x).

А2. Условие термодинамического равновесия

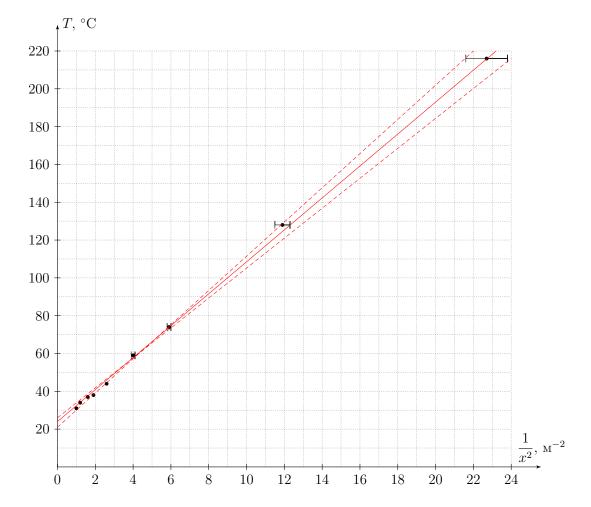
$$P_{out} = P_{in}, \text{ r.e. } \alpha S(T - T_0) = \frac{U^2}{R}, \tag{1}$$

где R — сопротивление проводника. Выразим его через удельное сопротивление

$$R = \frac{4\rho x}{\pi d^2} \tag{2}$$

и подставим формулу для площади боковой поверхности проводника

$$S = \pi dx. (3)$$


Получим

$$T = T_0 + \frac{U^2 d}{4\rho\alpha} \cdot \frac{1}{x^2}.\tag{4}$$

А3. Таким образом, линеаризация имеет вид $T\left(\frac{1}{x^2}\right)$. Планки погрешности для оси абсцисс:

$$\Delta \frac{1}{x_i^2} = \frac{\Delta x}{x_i} \cdot 2 \cdot \frac{1}{x_i^2}.$$

x, cm	T, °C	$1/x^2$, M^{-2}	$\Delta(1/x^2), \text{ M}^{-2}$
21	216	22,7	1,1
29	128	11,9	0,4
41	74	5,9	0,1
50	59	4,0	0,1
62	44	2,6	
73	38	1,9	
80	37	1,6	
91	34	1,2	
100	31	1,0	

А4. Согласно формуле (4) пересечение оси ординат графиком укажет на температуру окружающей среды:

$$T_0 = (24 \pm 2)$$
 °C.

А5. Коэффициент наклона и его погрешность:

$$k = \frac{k_{\text{max}} + k_{\text{min}}}{2}, \ \Delta k = \frac{k_{\text{max}} - k_{\text{min}}}{2}.$$

$$k = (8.5 \pm 0.6) \ ^{\circ}\text{C} \cdot \text{M}^{2}.$$

В1. Диаметр получим по методу прокатывания:

$$d = \frac{l}{\pi N} = (2.52 \pm 0.02) \text{ mm}.$$

В2. Выразим из уравнения (2) удельное сопротивление, только вместо x будет L:

$$\rho = \frac{\pi d^2 R}{4L}, \quad \varepsilon(\rho) = 2\varepsilon(d) + \varepsilon(R) = 12\%.$$

$$\rho = (0.13 \pm 0.02) \text{ Om} \cdot \text{mm}^2/\text{m}.$$

ВЗ. Выразим коэффициент

$$\alpha = \frac{U^2 d}{4\rho k}, \ \varepsilon(\alpha) = 2\varepsilon(U) + \varepsilon(d) + \varepsilon(\rho) + \varepsilon(k) = 14\%.$$

$$\alpha = (280 \pm 40) \ \mathrm{Bt/(^{\circ}C \cdot m^2)}$$