

Вязкость воды

Синяя игла

Наберём в шприц 10 мл воды и 10 мл воздуха, как сказано в условии задачи. Одновременно нажмём на поршень и включим секундомер. Следим за тем, чтобы выбранное значение объёма воздуха в шприце было постоянным на протяжении всего процесса вытекания воды. Убедимся в воспроизводимости результата серией 3 измерений для каждого значения объёма воздуха V. Заполним таблицу t(V).

V, мл	t_1, c	t_2 , c	t_3 , c	t, c
9	49,51	48,16	49,21	48,96
8	31,79	29,49	29,92	30,4
7	19,34	17,94	17,08	18,12
6	15,68	16,03	15,43	15,71
5	12,51	13,32	11,52	12,45
4	10,32	10,03	10,01	10,12

Будем считать, что нам удалось создать постоянный расход воды и тогда формулу Пуазейля можем записать так:

$$\frac{V_{\rm B}}{t} = \frac{\pi r^4}{8\eta L} \Delta p,$$

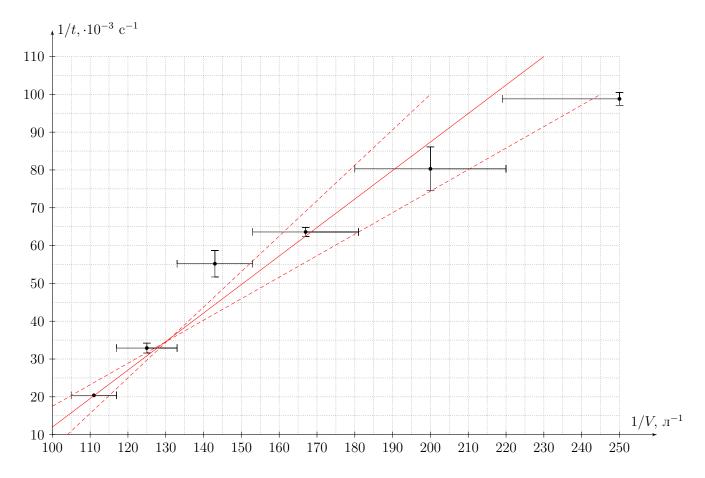
где $\Delta p = p - p_0$. Давление воздуха внутри шприца найдем из закона Бойля-Мариотта:

$$p = p_0 \frac{V_0}{V},$$

тогда

$$\frac{V_{\scriptscriptstyle \rm B}}{t} = \frac{\pi r^4 p_0}{8\eta L} \left(\frac{V_0}{V} - 1\right).$$

Окончательно преобразуем выражение и получим искомую зависимость:


$$\frac{1}{t} = \frac{\pi r^4 p_0 V_0}{8\eta L V_{\rm B}} \cdot \frac{1}{V} - \frac{\pi r^4 p_0}{8\eta L V_{\rm B}}.$$
 (1)

Пересчитаем полученные данные для построения линейной зависимости и оценим их погрешность.

$$\Delta \frac{1}{t} = \varepsilon(t) \cdot \frac{1}{t} = \frac{\Delta t}{t^2}, \quad \text{аналогично} \quad \Delta \frac{1}{V} = \frac{\Delta V}{V^2},$$

где Δt — случайная погрешность определения времени, а $\Delta V=0.5$ мл — приборная погрешность (половина цены деления шкалы шприца).

V, мл	t, c	$\varepsilon(t)$, %	$1/t$, $\cdot 10^{-3}$ c ⁻¹	$\Delta(1/t), \cdot 10^{-3} \text{ c}^{-1}$	$1/V$, π^{-1}	$\Delta(1/V), \ \pi^{-1}$
9	48,96	1,4	20,4	0,3	111	6
8	30,40	4,0	32,9	1,3	125	8
7	18,12	6,3	55,2	3,5	143	10
6	15,71	1,9	63,6	1,2	167	14
5	12,45	7,2	80,3	5,8	200	20
4	10,12	1,7	98,8	1,7	250	31

Коэффициент наклона $k_1 = (0.75 \pm 0.18) \cdot 10^{-3}$ л/с, $\varepsilon(k_1) = 24\%$. Из формулы [1] используем коэффициент наклона

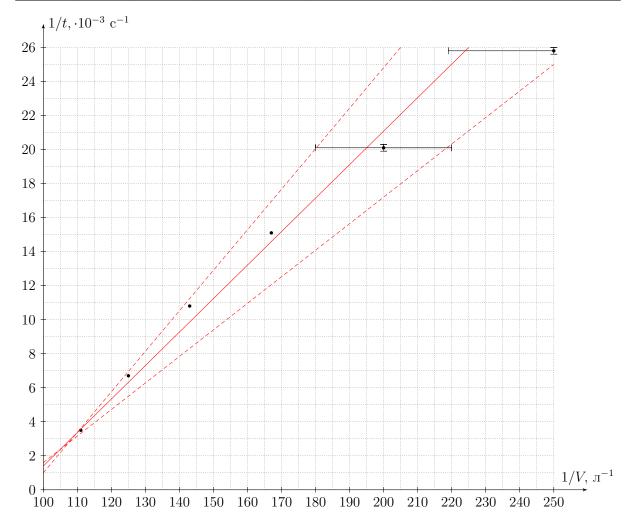
$$k_1 = rac{\pi r^4 p_0 V_0}{8 \eta L_1 V_{ ext{B}}}, \;$$
значит $\eta = rac{\pi r^4 p_0 V_0}{8 k_1 L_1 V_{ ext{B}}}.$

Есть все необходимые данные кроме длины иглы, воспользуемся линейкой:

$$L_1 = (29.0 \pm 0.5) \text{ mm}, \ \varepsilon(L_1) = \frac{0.5}{29.0} = 2\%.$$

Подставим все известные величины и найдем вязкость воды $[\varepsilon(\eta) = \varepsilon(k_1) + \varepsilon(L_1)]$

$$\eta = (1.5 \pm 0.4) \cdot 10^{-2} \text{ Ha} \cdot \text{c.}$$


Серая игла

Повторим измерения с серой иглой. Заметим, что время вытекания сильно больше, а значит, с целью экономии времени, измерения, превышающие 1 минуту, выполним лишь раз.

V, мл	t_1 , c	t_2 , c	t_3 , c	t, c
9	285,23	_	_	285,23
8	150,10	_	_	150,10
7	92,75	_	_	92,75
6	66,44	_	_	66,44
5	50,92	47,52	50,82	49,75
4	40,26	37,80	38,35	38,80

Пересчитаем полученные данные для построения линейной зависимости и оценим погрешности.

V, мл	t, c	$\varepsilon(t)$, %	$1/t$, $\cdot 10^{-3}$ c ⁻¹	$\Delta(1/t), \cdot 10^{-3} \text{ c}^{-1}$	$1/V$, π^{-1}	$\Delta(1/V), \ \pi^{-1}$
9	285,23	_	3,5	_	111	6
8	150,10	_	6,7	_	125	8
7	92,75		10,8	_	143	10
6	66,44	_	15,1	_	167	14
5	50,92	4	20,1	0,1	200	20
4	40,26	4	25,8	0,1	250	31

$$k_2 = (0.20 \pm 0.04) \cdot 10^{-3} \text{ m/c}, \ \varepsilon(k_2) = 20 \%.$$

Длина этой серой иглы $L_2=(19.0\pm0.5)$ мм, $\varepsilon(L_2)=3\,\%.$

Для того, чтобы найти внутренний радиус серой иглы запишем отношение коэффициентов наклонов:

$$\frac{k_1}{k_2} = \frac{L_2}{L_1} \left(\frac{r_1}{r_2}\right)^4,$$

тиран

$$r_2 = r_1 \sqrt[4]{\frac{k_2 L_2}{k_1 L_1}}.$$

Оценим погрешность

$$\varepsilon(r_2) = \frac{\varepsilon(k_1) + \varepsilon(k_2) + \varepsilon(L_1) + \varepsilon(L_2)}{4} \approx 13\%.$$

$$r_2 = (0.19 \pm 0.03) \text{ mm}.$$